Convective cooling in CIGRE207#
- linerate.equations.cigre207.convective_cooling.compute_thermal_conductivity_of_air(film_temperature)[source]#
Approximation of the thermal conductivity of air.
On page 5 of [4].
- Parameters:
film_temperature (Annotated[float | float64 | ndarray[Any, dtype[float64]], '°C']) – \(T_f = 0.5 (T_s + T_a)~\left[^\circ\text{C}\right]\). The temperature of the thin air-film surrounding the conductor. Equal to the average of the ambient air temperature and the conductor sufrace temperature.
- Returns:
\(\lambda_f~\left[\text{W}~\text{m}^{-1}~\text{K}^{-1}\right]\). The thermal conductivity of air at the given temperature.
- Return type:
Union[float, float64, ndarray[Any, dtype[float64]]]
- linerate.equations.cigre207.convective_cooling.compute_relative_air_density(height_above_sea_level)[source]#
Approximation of the relative density of air at a given altitude, relative to density at sea level.
Equation on page 6 of [4].
- Parameters:
height_above_sea_level (Annotated[float | float64 | ndarray[Any, dtype[float64]], 'm']) – \(y~\left[\text{m}\right]\). The conductor’s altitude.
- Returns:
\(\rho_r\). The relative mass density of air.
- Return type:
Union[float, float64, ndarray[Any, dtype[float64]]]
- linerate.equations.cigre207.convective_cooling.compute_kinematic_viscosity_of_air(film_temperature)[source]#
Approximation of the kinematic viscosity of air at a given temperature.
Equation on page 5 of [4].
- Parameters:
film_temperature (Annotated[float | float64 | ndarray[Any, dtype[float64]], '°C']) – \(T_f = 0.5 (T_s + T_a)~\left[^\circ\text{C}\right]\). The temperature of the thin air-film surrounding the conductor. Equal to the average of the ambient air temperature and the conductor sufrace temperature.
- Returns:
\(\nu_f~\left[\text{m}^2~\text{s}^{-1}\right]\). The kinematic viscosity of air.
- Return type:
Union[float, float64, ndarray[Any, dtype[float64]]]
- linerate.equations.cigre207.convective_cooling.compute_prandtl_number(film_temperature)[source]#
Compute the Prandtl number.
Defined on page 5 of [4].
The Prandtl number measures the ratio between viscosity and thermal diffusivity for a fluid.
- Parameters:
film_temperature (Annotated[float | float64 | ndarray[Any, dtype[float64]], '°C']) – \(T_f = 0.5 (T_s + T_a)~\left[^\circ\text{C}\right]\). The temperature of the thin air-film surrounding the conductor. Equal to the average of the ambient air temperature and the conductor sufrace temperature.
- Returns:
\(\text{Pr}\). The Prandtl number.
- Return type:
Union[float, float64, ndarray[Any, dtype[float64]]]
- linerate.equations.cigre207.convective_cooling.compute_reynolds_number(wind_speed, conductor_diameter, kinematic_viscosity_of_air, relative_air_density)[source]#
Compute the Reynolds number using the conductor diameter as characteristic length scale.
Defined on page 5 of [4]. This is a non-standard definition which seems to indicate that the kinematic viscosity has to be corrected for the density.
- Parameters:
wind_speed (Annotated[float | float64 | ndarray[Any, dtype[float64]], 'm/s']) – \(v~\left[\text{m}~\text{s}^{-1}\right]\). The wind speed.
conductor_diameter (Annotated[float | float64 | ndarray[Any, dtype[float64]], 'm']) – \(D~\left[\text{m}\right]\). Outer diameter of the conductor.
kinematic_viscosity_of_air (Annotated[float | float64 | ndarray[Any, dtype[float64]], 'm²/s']) – \(\nu_f~\left[\text{m}^2~\text{s}^{-1}\right]\). The kinematic viscosity of air.
relative_air_density (Annotated[float | float64 | ndarray[Any, dtype[float64]], '']) – \(\rho_r~1\). The air density relative to density at sea level.
- Returns:
\(\text{Re}\). The Reynolds number.
- Return type:
Union[float, float64, ndarray[Any, dtype[float64]]]
- linerate.equations.cigre207.convective_cooling.compute_perpendicular_flow_nusseltnumber(reynolds_number, conductor_roughness)[source]#
Compute the Nusselt number for perpendicular flow.
The Nusselt number is the ratio of conductive heat transfer to convective heat transfer.
- Parameters:
reynolds_number (Annotated[float | float64 | ndarray[Any, dtype[float64]], '']) – \(\text{Re}\). The Reynolds number.
conductor_roughness (Annotated[float | float64 | ndarray[Any, dtype[float64]], 'm']) – \(\text{Rs}\). The roughness number
- Returns:
\(\text{Nu}_{90}\). The perpendicular flow Nusselt number.
- Return type:
Union[float, float64, ndarray[Any, dtype[float64]]]
- linerate.equations.cigre207.convective_cooling.compute_low_wind_speed_nusseltnumber(perpendicular_flow_nusselt_number)[source]#
Compute the corrected Nusselt number for low wind speed.
- Parameters:
perpendicular_flow_nusselt_number (Annotated[float | float64 | ndarray[Any, dtype[float64]], '']) – \(\text{Nu}_{90}\). The perpendicular flow Nusselt number.
- Returns:
\(\text{Nu}_{cor}\). The corrected Nusselt number for low wind speed.
- Return type:
Union[float, float64, ndarray[Any, dtype[float64]]]
- linerate.equations.cigre207.convective_cooling.correct_wind_direction_effect_on_nusselt_number(perpendicular_flow_nusselt_number, angle_of_attack)[source]#
Correct the Nusselt number for the wind’s angle-of-attack.
Equation (14) on page 7 of [4].
The perpendicular flow nusselt number is denoted as \(\text{Nu}_\delta\) in [4] since the wind’s angle of attack is \(\delta\).
- Parameters:
perpendicular_flow_nusselt_number (Annotated[float | float64 | ndarray[Any, dtype[float64]], '']) – \(\text{Nu}_{90}\). The perpendicular flow Nusselt number.
angle_of_attack (Annotated[float | float64 | ndarray[Any, dtype[float64]], 'rad']) – \(\delta~\left[\text{radian}\right]\). The wind angle-of-attack.
- Returns:
\(\text{Nu}_\delta\). The Nusselt number for the given wind angle-of-attack.
- Return type:
Union[float, float64, ndarray[Any, dtype[float64]]]
- linerate.equations.cigre207.convective_cooling.compute_horizontal_natural_nusselt_number(grashof_number, prandtl_number)[source]#
The Nusselt number for natural (passive) convection on a horizontal conductor.
Equation (16) and Table II on page 7 of [4]. We expand the allowable range by using Table 9.1 of [7].
- Parameters:
grashof_number (Annotated[float | float64 | ndarray[Any, dtype[float64]], '']) – \(\text{Gr}\). The Grashof number.
prandtl_number (Annotated[float | float64 | ndarray[Any, dtype[float64]], '']) – \(\text{Pr}\). The Prandtl number.
- Returns:
\(\text{Nu}_0\). The natural convection nusselt number assuming horizontal conductor.
- Return type:
Union[float, float64, ndarray[Any, dtype[float64]]]
- linerate.equations.cigre207.convective_cooling.compute_nusselt_number(forced_convection_nusselt_number, natural_nusselt_number, low_wind_nusselt_number, wind_speed)[source]#
Compute the nusselt number.
Described on page 7 of [4].
- Parameters:
forced_convection_nusselt_number (Annotated[float | float64 | ndarray[Any, dtype[float64]], '']) – \(\text{Nu}_\delta\). The Nusselt number for the given wind angle-of-attack.
natural_nusselt_number (Annotated[float | float64 | ndarray[Any, dtype[float64]], '']) – \(\text{Nu}_\delta\). The natural convection nusselt number for horizontal conductor.
low_wind_nusselt_number (Annotated[float | float64 | ndarray[Any, dtype[float64]], '']) – \(\text{Nu}_cor\). Corrected Nusselt number for low wind.
wind_speed (Annotated[float | float64 | ndarray[Any, dtype[float64]], 'm/s']) – \(v~\left[\text{m}~\text{s}^{-1}\right]\). The wind speed.
- Returns:
\(Nu\). The nusselt number.
- Return type:
Union[float, float64, ndarray[Any, dtype[float64]]]