Source code for linerate.models.cigre207

from linerate.equations import (
    cigre207,
    convective_cooling,
    dimensionless,
    math,
    solar_angles,
    solar_heating,
)
from linerate.equations.math import switch_cos_sin
from linerate.models.thermal_model import ThermalModel, _copy_method_docstring
from linerate.types import Span, Weather
from linerate.units import Ampere, Celsius, Date, OhmPerMeter, WattPerMeter


[docs] class Cigre207(ThermalModel): def __init__( self, span: Span, weather: Weather, time: Date, include_diffuse_radiation: bool = True, direct_radiation_factor: float = 1.0, ): super().__init__(span, weather) self.time = time self.include_diffuse_radiation = include_diffuse_radiation self.direct_radiation_factor = direct_radiation_factor
[docs] @_copy_method_docstring(ThermalModel) def compute_joule_heating( self, conductor_temperature: Celsius, current: Ampere ) -> WattPerMeter: return super().compute_joule_heating( conductor_temperature=conductor_temperature, current=current )
[docs] @_copy_method_docstring(ThermalModel) def compute_solar_heating( self, conductor_temperature: Celsius, current: Ampere ) -> WattPerMeter: alpha_s = self.span.conductor.solar_absorptivity phi = self.span.latitude gamma_c = self.span.conductor_azimuth y = self.span.conductor_altitude D = self.span.conductor.conductor_diameter omega = solar_angles.compute_hour_angle_relative_to_noon(self.time, self.span.longitude) delta = solar_angles.compute_solar_declination(self.time) sin_H_s = solar_angles.compute_sin_solar_altitude(phi, delta, omega) chi = solar_angles.compute_solar_azimuth_variable(phi, delta, omega) C = solar_angles.compute_solar_azimuth_constant(chi, omega) gamma_s = solar_angles.compute_solar_azimuth(C, chi) # Z_c in IEEE cos_eta = solar_angles.compute_cos_solar_effective_incidence_angle( sin_H_s, gamma_s, gamma_c ) sin_eta = switch_cos_sin(cos_eta) I_B = self.direct_radiation_factor * cigre207.solar_heating.compute_direct_solar_radiation( sin_H_s, y ) if self.include_diffuse_radiation: I_d = cigre207.solar_heating.compute_diffuse_sky_radiation(I_B, sin_H_s) F = self.span.ground_albedo else: I_d = 0 F = 0 I_T = cigre207.solar_heating.compute_global_radiation_intensity( I_B, I_d, F, sin_eta, sin_H_s ) return solar_heating.compute_solar_heating( alpha_s, I_T, D, )
[docs] @_copy_method_docstring(ThermalModel) def compute_convective_cooling( self, conductor_temperature: Celsius, current: Ampere ) -> WattPerMeter: D = self.span.conductor.conductor_diameter d = self.span.conductor.outer_layer_strand_diameter V = self.weather.wind_speed y = self.span.conductor_altitude T_a = self.weather.air_temperature T_c = conductor_temperature T_f = 0.5 * (T_c + T_a) # Compute physical quantities lambda_f = cigre207.convective_cooling.compute_thermal_conductivity_of_air(T_f) nu_f = cigre207.convective_cooling.compute_kinematic_viscosity_of_air(T_f) delta = math.compute_angle_of_attack( self.weather.wind_direction, self.span.conductor_azimuth ) # Compute unitless quantities rho_r = cigre207.convective_cooling.compute_relative_air_density(y) Re = cigre207.convective_cooling.compute_reynolds_number(V, D, nu_f, rho_r) Gr = dimensionless.compute_grashof_number(D, T_c, T_a, nu_f) Pr = cigre207.convective_cooling.compute_prandtl_number(T_f) Rs = dimensionless.compute_conductor_roughness(D, d) # Compute nusselt numbers Nu_90 = cigre207.convective_cooling.compute_perpendicular_flow_nusseltnumber( reynolds_number=Re, conductor_roughness=Rs ) Nu_delta = cigre207.convective_cooling.correct_wind_direction_effect_on_nusselt_number( Nu_90, delta ) Nu_cor = cigre207.convective_cooling.compute_low_wind_speed_nusseltnumber(Nu_90) Nu_0 = cigre207.convective_cooling.compute_horizontal_natural_nusselt_number(Gr, Pr) Nu = cigre207.convective_cooling.compute_nusselt_number( forced_convection_nusselt_number=Nu_delta, natural_nusselt_number=Nu_0, low_wind_nusselt_number=Nu_cor, wind_speed=V, ) return convective_cooling.compute_convective_cooling( surface_temperature=conductor_temperature, air_temperature=self.weather.air_temperature, nusselt_number=Nu, thermal_conductivity_of_air=lambda_f, )
[docs] @_copy_method_docstring(ThermalModel) def compute_radiative_cooling( self, conductor_temperature: Celsius, current: Ampere ) -> WattPerMeter: return super().compute_radiative_cooling( conductor_temperature=conductor_temperature, current=current )
[docs] @_copy_method_docstring(ThermalModel) def compute_resistance(self, conductor_temperature: Celsius, current: Ampere) -> OhmPerMeter: return super().compute_resistance( conductor_temperature=conductor_temperature, current=current )